Alles zum Thema Energien

Ein internationales Team um den HZB-Forscher Jaime Sánchez-Barriga hat gezeigt, wie sich in Proben aus einem Topologischen Isolator-Material spinpolarisierte Ströme gezielt in Gang setzen lassen. Zudem konnten sie die Ausrichtung der Spins in diesen Strömen kontrollieren. Damit demonstrierten sie, dass sich diese Materialklasse dafür eignet, mithilfe von Spins Daten zu verarbeiten.

Die Arbeit ist in der renommierten Zeitschrift Physical Review B erschienen und wurde als „Editor’s Suggestion“ ausgezeichnet.

Künftige Informationstechnologien sollen Daten mit deutlich weniger Einsatz von Energie verarbeiten. Eine spannende Materialklasse dafür sind Topologische Isolatoren. Sie zeichnen sich dadurch aus, dass ihre Elektronen an der Oberfläche extrem beweglich sind und das Material dort leitfähig ist. Im Innern ist es dagegen ein Isolator, dort leitet es keinen Strom.

Da Elektronen gleichzeitig auch ein magnetisches Moment tragen (Spin), könnten Topologische Isolatoren auch „spintronische“ Bauelemente ermöglichen: diese basieren nicht mehr wie Halbleiterbauelemente auf der Bewegung von Ladungsträgern wie Elektronen, sondern auf dem Transport oder der Manipulation ihrer Spins. Um damit zu schalten, wird deutlich weniger Energie benötigt.

Nun hat ein internationales Team um den HZB-Physiker Jaime Sánchez-Barriga gezeigt, wie sich in Topologischen Isolatoren die Spins der Elektronen ausrichten und kontrollieren lassen. Sie untersuchten Proben aus dem Topologischen Isolator Antimon-Tellurid mit zirkular polarisiertem Laserlicht. Über die „Drehrichtung“ des Laserlichts konnten sie Elektronen-Ströme mit parallel ausgerichteten Spins (spinpolarisiert) gezielt in Gang setzen und lenken. Zudem gelang es ihnen, die Ausrichtung der Spins zu verändern. Am Team waren Experimentatoren vom Berliner Max-Born-Institut, der Lomonossow Universität Moskau und Theoretiker von der LMU München beteiligt. Die Arbeit ist in der renommierten Zeitschrift Physical Review B erschienen und wurde als „Editor’s Suggestion“ ausgezeichnet.

„Wenn man magnetisch dotierte topologische Isolatoren verwenden würde, könnte man die Spininformation vermutlich auch speichern“, erklärt Oliver Rader, der am HZB die Abteilung für grüne Spintronik leitet. „Um das zu untersuchen und dabei auch insbesondere das dynamische Verhalten der magnetischen Momente zu erkunden, werden aber ultrakurze
Lichtpulse im weichen Röntgenbereich benötigt. Mit dem geplanten Upgrade der Synchrotronquelle BESSY II zu BESSY VSR können solche Experimente in Zukunft zum Standard werden.“

Quelle: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH